PEOs for the Institution-UG

PEO1. The graduates will apply appropriate theory and scientific knowledge to participate in activities that support humanity and economic development nationally and globally, developing as leaders in their fields of expertise.

PEO2. The graduates pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards.

PEOs for the UG Departments

Mathematics:

PEO3: The graduates will demonstrate the ability to utilize effectively the variety of teaching techniques and class room strategies and develop confidence to appear for competitive examinations and occupy higher levels of academic and administrative fields.

B.Sc. Mathematics (PO)

PO No.	Upon completion of the B.Sc. Degree Programme, the graduates will be able to:
PO - 1	equip students with hands on training through various courses to enhance entrepreneurshipskills.
PO - 2	impart communicative skills and ethical values.
PO - 3	face challenging competitive examinations that offer rewarding careers in science and education.
PO - 4	apply the acquired scientific knowledge to face day to day needs and reflect upon green
	initiatives to build a sustainable environment.

B.Sc. Mathematics (PSO)

PSO No.	Upon completion of the B.Sc. Degree Programme, the graduates will be able to:	PO addressed
PSO - 1	acquire a strong foundation in various branches of mathematics to formulate real life problems into mathematical models	PO 4
PSO - 2	apply the mathematical knowledge and skills to develop problem solvingskills cultivating logical thinking and face competitive examinations with confidence.	PO 3, 4
PSO - 3	develop entrepreneurial skills based on ethical values, become empowered and self dependent in society.	PO 1,2
PSO - 4	enhance numerical ability and address problems in interdisciplinary areas which would help in project and field works.	PO 1
PSO - 5	pursue scientific research and develop new findings with global impact using latest technologies.	PO 4

Semester	: I	Major Core I
Name of the Course	: Differential Calculus and Trigonometry	
Subject code	: MC2011	

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

To impart knowledge on applications of Differential Calculus and important concepts of Trigonometry.
 To enhance problem solving skills.

CO	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	Recall the idea of derivative, rules of differentiation and understand the concept of p-r equation.	PSO - 1	R
CO - 2	Learn the concepts of curvature, circle of curvature, evolute and apply the concepts to solve problems.	PSO - 2	U, Ap
CO - 3	Recognize the rules of identifying asymptotes and employ the same to different curves.	PSO - 3	Ap, U
CO - 4	Acquire the knowledge about hyperbolic functions and compare it with circular functions, trigonometric functions, inverse trigonometric functions and their properties.	PSO - 1	U, E
CO - 5	Categorize the methods of finding the sum of trigonometric series.	PSO - 8	An

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/
			hours			evaluation
Ι	Curvatu	re				
	1.	Introduction and definition of pedal equation	2	Recall the idea of derivative, rules of differentiation and understand the concept of p-r equation	Lecture	Test
	2.	Problems related to p-r equations	6	Apply the concept of p-r equation in problems	Lecture with illustrations	Group Discussion
	3.	Introduction, definition and theorems based on of curvature	3	To understand the definition of curvature and learn the theorems	Lecture	Test
	4.	Radius of curvature in different forms	2	To understand the definitions of closed sets and limit points with examples and theorems	Lecture	Test
	5.	Problems related to Radius of curvature	2	To identify Hausdorff spaces and practice various theorems	Lecture with illustrations	Group discussion
II	0	Centre of curvature, E	zvolute			

	1					
	1.	Definition and	5	To understand the	Lecture	Test
		problems based on		definition of centre of		
		centre of curvature		curvature of the curve		
		of the curve				
	2.	Definition and	5	To understand the	Lecture	Q&A
		problems related to		definition of evolute of		
		evolute of the curve		the curve and practice		
				problems		
	3.	Definition and	5	To practice various	Lecture	Formative
		problems on circle		problems related to		Assessment
		of curvature		circle of curvature		Test
III	A	symptotes				
	1.	Definition and	3	To understand the	Lecture	Quiz
	1.	methods of finding	5	methods of finding	Leeture	Qui
		asymptotes for the		asymptotes		
		curve $y=f(x)$ and		asymptotos		
		$\begin{array}{c} f(x,y)=0 \end{array}$				
	2.	Working rule to	2	Recognize the rules of	Lecture	Test
	۷.	find the inclined	-	identifying asymptotes	with	1051
		asymptotes		dentrying asymptotes	illustration	
	3.	Problems on linear	5	To apply the rules to	Lecture	Brain
	5.		5	different curves	with group	
		asymptotes and intersection of		different curves	discussion	stoming
					discussion	
	4	curves	5		T. a. a face wa	A
	4.	Problems based on	5	To apply the rules to	Lecture	Assignment
** 7		inclined asymptotes		different curves		
IV		olic functions, Logarit			-	
	1.	Introduction and	2	Acquire the knowledge	Lecture	Quiz
		definition of		about hyperbolic	with	
		Hyperbolic		functions	illustration	
		functions			_	
	2.	Problems based on	4	To compare with	Lecture	Q&A
		hyperbolic		circular functions,		
		functions				
	3.	Definitions and	4	Acquire the knowledge	Lecture	Slip Test
		Problems based on		about inverse		
		inverse hyperbolic		hyperbolic functions		
		functions				
	4.	Separate into real	5	To distinguish various	Lecture	Formative
		and imaginary parts		hyperbolic functions,		Assessment
		of hyperbolic and		trigonometric functions,		Test
		inverse hyperbolic		inverse trigonometric		
		functions		functions		
V		ummation of Trigono	ometric Ser	ries		
	1.	Introduction and	4	To analyze the methods	Lecture	Quiz
		Illustrations based		of finding the sum of	with	
		on method of		trigonometric series	illustration	
		difference		-		
	2.	Theorem and	7	To categorize problems	Lecture	Test
		problems on sum of		on sum of sines and		
	1	1 *	1	1	i	1

	sines and cosines of n angles in A.P		cosines of n angles in A.P		
3.	Introduction of C+iS method	1	To know C+iS method	Lecture	Slip Test
4.	Problems related to C+iS method	3	To apply C+iS method to find the sum of trigonometric series	Lecture	Assignment

Course Instructor: Dr.K.Jeya Daisy Course Instructor: Ms. V. Princy Kala

HoD: Dr. V. M. Arul Flower Mary HoD(SF): Mrs. J. Anne Mary Leema

Semester	: I	Allied I
Name of the Course	: Algebra and Calculus (for Physics and Chemistry)	
Subject code	: MA2011	

No. of hours per week	Credits	Total No. of hours	Marks	
6	5	90	100	

Objectives:

1. To impart knowledge in concepts related to Algebra.

2. To solve problems in Physical Science.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	Recall the fundamentals of algebraic equations, matrices and rules of integration	PSO - 1	R
CO - 2	Practice the formation of equations and compute symmetric functions of roots in terms of coefficients	PSO - 2	Ар
CO - 3	Revise the properties of eigen values of the matrices	PSO - 3	Е
CO - 4	Learn Beta, Gamma functions and evaluate integrals using them	PSO - 4	E, U
CO - 5	Practice the expansion of Fourier series and utilize the same for higher studies	PSO - 5	Ар

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Theory of	of equations				
	1.	Basic definition about Polynomial and its roots. Fundamental Theorem of Algebra and related theorems without proof	3	To recall the fundamentals of algebraic equations, matrices and rules of integration	Lecture	Short Test
	2.	Formation of equations of lowest degree with	3	Practice the formation of	Lecture and group	Test

	1				1	
		rational coefficients and		equations and to	discussion	
		solving equations when		solve equations		
		one root and two roots		when one root and		
		given.		two roots given.		
	3.	Formation of equation	3	Practice the	Lecture	Test
		of the lowest degree		formation of		
		with rational		equations and		
		coefficients whose roots		compute symmetric		
		are given		functions of roots in		
		C		terms of coefficients		
				whose roots are		
				given		
	4.	Proving that the given	2	To Prove that the	Lecture	Test
		equation has no	2	given equation has	Lecture	1050
		imaginary roots and		no imaginary roots		
		Relation between roots		and understand the		
		and coefficients		relation between		
		and coefficients		roots and		
				coefficients		
	5.	Solving constinue if	2		Lecture	Test
	5.	Solving equations if	Z	To Solve equations	Lecture	Test
		their roots are in G.P,		if their roots are in		
		A.P		G.P, A.P.	T	
	6.	Solving equations and	2	To Solve equations	Lecture	Test
		finding equal roots two		and finding equal		
		pairs of equal roots,		roots, two pairs of		
		roots which are in some		equal roots, roots		
		ratio.		which are in some		
				ratio.		
II		rmation of equations				
	1	Formation of equation	3	To understand the	Lecture and	Test
		whose roots are k times		transformation of	discussion	
		the roots of $f(x) = 0$.		equations and		
				formation of		
				equation whose roots		
				are k times the roots		
				of $f(x) = 0$.		
	2	Form the equation	3	To identify the	Lecture	Formative
		whose roots are		equation whose roots		Assessment
		negative of the roots of		are negative of the		
		the given equation and		roots of the given		
		whose roots are		equation and whose		
		diminished by <i>h</i>		roots are diminished		
				by <i>h</i>		
	3	Solve the equation	3	To identify the	Lecture	Test
	-	whose roots are equal in	-	equation whose roots		
		magnitude but opposite		are equal in		
		in sign to the roots of		magnitude but		
		f(x) = 0 and to increase		opposite in sign to		
		the roots of $f(x) = 0$ by h		the roots of $f(x) = 0$		
		10013 01 1(x) - 0 0y 11		and to increase the		
				roots of $f(x) = 0$ by h		

	4	Solving the given equation and find the real root using Newton's	3	To calculate the given equation and find the real root	Lecture	Test
		method.		using Newton's method.		
	5	Finding positive and negative roots of the equation using Newton's method.	3	To identify positive and negative roots of the equation using Newton's method.	Lecture and discussion	Test
III	N	Matrices				
	1	Basic concepts of matrix addition, matrix multiplication and rank of a matrix and definitions	3	To understand the basic concepts in matrices	Lecture	Test
	2	Test the consistency of the system of given homogenous equations and solving if it is consistent.	2	To solve homogenous equations if it is consistent.	Lecture and discussion	Test
	3	Cayley Hamilton theorem and Solving problems based on Cayley Hamilton theorem	2	To understand Cayley Hamilton theorem solve problems based on it	Lecture	Test
	4	Defining matrix polynomial, Characteristic matrix, Characteristic polynomial and Characteristic equation	2	To identify Characteristic matrix, Characteristic polynomial and Characteristic equation	Lecture	Test
	5	Evaluating the sum and product of the eigen values of the matrix without actually finding the eigen values.	2	To evaluate the sum and product of the eigen values of the matrix without actually finding the eigen values	Lecture	Test
	6	Evaluating Characteristic roots, eigen values and eigen vectors of the matrix.	2	To evaluate Characteristic roots, eigen values and eigen vectors of the matrix.	Lecture	Test
	7	Evaluating the sum and product of the eigen values of the matrix without finding the roots of the characteristic equation.	1	To evaluate Characteristic roots, eigen values and eigen vectors of the matrix.	Lecture	Formative Assessment
	8	Evaluating the	1	To evaluate	Lecture	Test

		characteristic vectors corresponding to each characteristic root of the given matrix.		Characteristic roots, eigen values and eigen vectors of the matrix.		
IV	E	Beta and Gamma functions				
	1	Introduction to Beta, Gamma functions, its properties	4	To learn Beta, Gamma functions and its properties.	Lecture and discussion	Test
	2	Evaluation of integrals using Beta Functions	2	To evaluate integrals using Beta Functions	Lecture	Test
	3	Proving duplication formula.	3	To prove duplication formula.	Lecture	Test
	4	Problems based on Beta and Gamma functions.	3	To solve problems based on Beta and Gamma functions.	Lecture	Test
	5	Proving some results on Beta and Gamma functions.	3	To prove some results on Beta and Gamma functions.	Lecture	Test
V		Fourier Series Expansion				
	1	Fourier Series Expansion and Fourier coefficients	2	To understand Fourier Series Expansion and Fourier coefficients	Lecture	Test
	2	Explanation of Sine Series and Cosine Series and results based on them	2	To identify Sine Series and Cosine Series and results based on them	Lecture	Test
	3	Evaluate the Fourier Sine series and Fourier Cosine series for the given function.	3	To evaluate the Fourier Sine series and Fourier Cosine series for the given function.	Lecture	Test
	4	Evaluate the Half range Fourier Sine Series and Fourier Cosine Series for the given function.	3	To evaluate the Half range Fourier Sine Series and Fourier Cosine Series for the given function.	Lecture	Test
	5	Evaluate the Fourier series for the given function and deduce certain results.	3	To evaluate the Fourier series for the given function and deduce certain results.	Lecture	Test
	6	Evaluate the Fourier series for the given function in the intervals $(-\pi,\pi)_{\text{and}}(0,\pi)$	2	To evaluate the Fourier series for the given function in the intervals $(-\pi,\pi)_{and}$	Lecture	Formative Assessment
				$(0,\pi)$		

Course Instructor: Dr.K.Jeya Daisy& Dr. Jancy Vini

HoD: Dr. V. M. Arul Flower Mary HoD(SF): Mrs. J. Anne Mary Leema

Semester: IName of the Course: Quantitative Aptitude – I(NME)Course Code: MNM201

No. of hours per week	Credits	Total No. of hours	Marks	
4	2	60	100	

Objectives: 1. To develop the quantitative aptitude of the students.

2.To solve problems required for various competitive examinations.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	apply BODMAS rule for simplification and determine missing numbers in a sequence	PSO - 1	R
CO - 2	express numbers in the base of a fraction of 100.	PSO - 2	U
CO - 3	employ the problems related to the division of profit and loss of a business.	PSO - 4	Ар
CO - 4	measure the relative magnitude of two quantities in an effective way.	PSO - 2	С
CO - 5	construct and develop mathematical solutions to simple real life problems.	PSO - 1	Ар
CO - 6	learn ratio and proportion and practice duplication and triplication of ratios	PSO - 4	U, Ap

Unit I

Simplification - BODMAS rule - Modulus of a real number - Virnaculum - Some real life problems, Missing numbers in the expression.

Unit II

Percentage - Concepts of Percentage – Results on Population - Results on Depreciation.

Unit III

Profit and Loss – Cost price – Selling Price – Profit or Gain – Loss – gain percentage - loss percentage. Unit IV

Ratio and proportion – Fourth, third and mean proportionals – comparison of ratios, compound ratio – duplicate and subduplicate ratio- triplicate and subtriplicate ratio – variation.

Unit V

Partnership – Ratio of Division of Gains - Working and Sleeping partners – Chain Rule - Direct proportion – Indirect proportion.

Tot	tal contac	t hours: 60	(Including	g lectures,	assignments a	ind tests)

10	Total contact nours. ob (including fectures, assignments and tests)								
Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ valuation			
I	BODN	/IAS rule							

	1.	Simplification of numbers, BODMAS rule, Examples based on BODMAS rule	2	To apply BODMAS rule for simplification	Lecture through googlemeet	Online Quiz
	2.	Modulus of a real number, Examples related to Modulus of a real number	2	To solve problems based on modulus of a real number	Lecture through googlemeet	Online test
	3.	Virnaculam (Bar), Illustrations based on Virnaculam, Missing numbers in the given expression	2	To learn about Virnaculam and to determine missing numbers in a sequence	Lecture through googlemeet	Online Assignment
Π	Percent					
	1.	Concepts of Percentage	2	To understand the basic concepts of percentage	Lecture through googlemeet	Online Assignment
	2.	Results on Population	2	To acquire detailed knowledge on results on population	Lecture through googlemeet	Online test
	3.	Results on Depreciation.	2	To solve the problems on depreciation.	Lecture through googlemeet	Formative Assessment online Test
III	Profit a	nd Loss				
	1.	Cost price and Selling Price	2	To understand the concepts of cost price and selling price	Lecture through googlemeet	Online Quiz
	2.	Profit or Loss	2	To solve problems on profit or loss	Lecture through googlemeet	Online test
	3.	Gain percentage - loss percentage.	2	To learn techniques to solve problems involving gain percentage	Lecture through googlemeet	Online Assignment
IV	Ratio ar	nd proportion				
	1.	Fourth, third and mean proportionals	2	To understand about Fourth, third and mean proportionals	Lecture through googlemeet	Online Quiz and group discussion
	2.	comparison of ratios, compound ratio , duplicate and	2	To solve problems on ratios and compare them	Lecture through googlemeet	Online test

		-				
		subduplicate ratio				
	3.	triplicate and subtriplicate ratio	2	To learn about triplicate and subtriplicate ratio	Lecture through googlemeet	Online Assignment
V	Partner	ship				
	1.	Ratio of Division of Gains	2	To understand the basic concepts of partnersip	Lecture through googlemeet	Online Assignment
	2.	Working and Sleeping partners	2	To acquire skills to solve problems involving Working and Sleeping partners	Lecture through googlemeet	Online test
	3.	Chain Rule	2	To study about chain rule and to solve the problems related to chain rule	Lecture through googlemeet	Formative Assessment online Test

Course Instructor: Ms.T.Sheeba Helen **Course Instructor: Dr.J.C.Evelin**

HoD: Dr. V. M. Arul Flower Mary HoD(SF): Mrs. J. Anne Mary Leema

Semester	: II	Major Core II
Name of the Course	: Classical Algebra and I	ntegral Calculus
Course Code	: MC2021	

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:1. To give a sound knowledge in Classical Algebra.2. To solve problems in applications of Integral Calculus.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	recall the fundamentals of algebraic equations and rules of integration.	PSO - 1	R
CO - 2	apply fundamental theorem of algebra in framing and solving equations	PSO - 5	U
CO - 3	choose appropriate method for transformation of equations	PSO - 2	Ар
CO - 4	develop the skill of evaluation of double and triple integrals over different regions	PSO - 3	Ар
CO - 5	identify Beta, Gamma functions and utilize them for the evaluation of definite integrals	PSO - 5	Ap,E
CO - 6	develop the Fourier Series expansion in any interval and apply the same for solving technical and physical problems	PSO - 4	Ap, An

B.Sc. MATHEMATICS

PROGRAMME OUTCOMES OF B.SC.

- Apply the broaden and in-depth knowledge of science and computing to analyse, think creatively and generate solutions to face the global challenges.
- ▶ Foster intellectual curiosity, critical thinking and logical reasoning.
- Adapt to different roles and responsibilities and develop leadership qualities in multicultural working environment by relating to diversity and ethical practices.
- > Update the techniques and acquire skills to develop systems and methods to solve current problems.

PROGRAMME SPECIFIC OUTCOMES (PSO)

•

.

PSOs	Upon completion of B.Sc. Mathematics, the graduates will be able to :					
PSO - 1	acquire a strong foundation in various branches of mathematics.					
PSO - 2	O-2 develop problem solving skills cultivating logical thinking.					
PSO - 3	solve problems involving numerical ability and also problems in interdisciplinary areas which would widen the scope of career prospects.					
PSO - 4	apply the skills and knowledge gained through the study of mathematics to real life situations and face competitive examinations with confidence.					
PSO - 5	pursue higher studies which in turn will offer them job opportunities in government and public sector undertakings, banks, central government institutes etc.					

Semester: IIIMajor Core IIIName of the course: Differential Equations and Vector CalculusCourse Code: MC1731

No. of hours per week	Credits	Total No. of hours	Marks
6	6	90	100

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO	CL
CO-1	Distinguish linear, nonlinear, ordinary and partial differential equations	PSO-4	An
CO-2	Solve linear differential equations with constant and variable coefficients	PSO-1	U
CO-3	Explain the basic properties of Laplace Transform and inverse Laplace Transform	PSO-1	U
CO-4	Use the Laplace transform in finding the solution of linear differential equations	PSO-2, PSO-3	Ар
CO-5	Learn methods of forming and solving partial differential equations	PSO-1	U
CO-6	Learn differentiation and integration of vector valued functions	PSO-1	U
CO-7	Evaluate line and surface integrals using Green's theorem, Stoke's theorem and Gauss divergence theorem	PSO-4 PSO-5	Ap,E
CO-8	Apply the concepts to solve problems in physical sciences and engineering	PSO- 2	Ар

Teaching Plan

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Mod	ule	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment
Ι	Line	ar Diffe	rential equations	-			
	1	Differe equation constar coeffict of aux and comple	ons with	5	Distinguish linear , nonlinear, ordinary and partial differential equations, Solve linear differential equations with constant and variable coefficients	Lecture with illustration	Evaluation through: Short test on finding the particular integral Short test on
	2	Finding	g the particular	3	Solve linear differential	Lecture	homogeneous

	•	constants, Formation of		•	-	unknown	
	1	Introduction of Partial differential equations, Formation of Partial differential equations by eliminating the unknown	4	Learn methods of forming and solving partial differential equations	Lecture with illustration	Short test on formation of Partial differential equations by eliminating the	
Ш	1	tial Differential equations	4	The sum and the 1 st	Leafur	Charter	
	4	Solving Linear Differential equations using Laplace Transform, Solving simultaneous equations using	4	Use the Laplace transform in finding the solution of linear differential equations	Lecture with illustration	problem	
	3	Computation of Inverse Laplace Transform of specific functions, Problems on	3	Explain the basic properties of Laplace Transform and inverse Laplace Transform	Lecture with illustration	Assignment on the related	
	2	Problems on Laplace Transform, Definition of Inverse Laplace Transform, Properties of Inverse Laplace	5	Explain the basic properties of Laplace Transform and inverse Laplace Transform	Lecture with illustration	functions	
	1	Definition of Laplace Transform, Properties of Laplace Transform, Computation of Laplace Transform of	3	Explain the basic properties of Laplace Transform and inverse Laplace Transform	Lecture with PPT Illustration	Short test on Computation of Laplace Transform of standard	
Π	Lap	lace Transform	•	•	<u>k</u>	ł	
	4	Solving homogeneous linear equations using the logarithmic substitution , Solving homogeneous linear	3	Solve linear differential equations with constant and variable coefficients	Lecture with illustration		
	3	Finding the particular integral for x ⁿ f(x), Introduction of homogeneous linear equations, Conversion of homogeneous linear equations into	3	Distinguish linear , nonlinear, ordinary and partial differential equations, Solve linear differential equations with constant and variable coefficients	Lecture with illustration	Formative Assessment- I	
		integral for $\cos ax$, $\sin ax$, Finding the particular integral for $e^{ax}f(x)$		equations with constant and variable coefficients	with PPT Illustration		

		Partial differential equations by				constants, and arbitrary function.
	2	Methods of solving Partial differential equations, Standard form of Lagrange's equation, General solution	3	Learn methods of forming and solving partial differential equations	Lecture with PPT Illustration	
	3	Solving Lagrange's equation by method of grouping, Solving	4	Learn methods of forming and solving partial differential equations	Lecture with illustration	Quiz
	4	Solution of Lagrange's equation using grouping and suitable multipliers, Explanation of Charpit's method, Finding the solution of PDF	4	Learn methods of forming and solving partial differential equations	Lecture Discussion	Formative
IV	Vect	or Differentiation	*	•	-	<u> </u>
	1	Revision of dot and cross product of vectors, Definition and theorems on differentiation of Vectors, Gradient of a scalar function and	4	Learn differentiation and integration of vector valued functions	Lecture with PPT Illustration	Short test on gradient & differentiation of Vectors
	2	Problems based on Gradient, Equation of tangent plane and normal line for a single surface, Equation of tangent line and normal	4	Learn differentiation and integration of vector valued functions	Lecture with illustration	Formative Assessment- I Short test on Divergence, Curl ,
	3	Angle between two surfaces, Divergence of vectors and its properties, Curl	3	Learn differentiation and integration of vector valued functions	Lecture with illustration	Solenoidal and irrotational vectors,
	4	Solenoidal and irrotational vectors, Harmonic vectors and Laplace's	4	Learn differentiation and integration of vector valued functions	Lecture with illustration	Formative Assessment- II

1	Definition of line integrals and work done by a force, Parametric equation of curves, Evaluation of line integrals over curves in a plane, Evaluation of line integrals over curves in a surface	4	Evaluate line and surface integrals using Green's theorem, Stoke's theorem and Gauss divergence theorem	Lecture with illustration	Short test on Evaluation of line
2	Computation of work done by a force, Projection of a surface over a plane, Definition of surface integrals, Evaluation of surface integrals over a plane	4	Evaluate line and surface integrals using Green's theorem, Stoke's theorem and Gauss divergence theorem, Apply the concepts to solve problems in physical sciences	Lecture with Discussion	integrals Formative Assessment- II
3	Evaluation of surface integrals over a cube and parrelopiped, Evaluation of surface integrals over a sphere, cylinder and cone, Statement and verification of Green's theorem	4	Evaluate line and surface integrals using Green's theorem, Stoke's theorem and Gauss divergence theorem, Apply the concepts to solve	Lecture with illustration	Short test on Green's theorem& Stoke's theorem
4	Statement and verification of Stoke's theorem, Statement and verification of Gauss Divergence theorem	4	Evaluate line and surface integrals using Green's theorem, Stoke's theorem and Gauss divergence theorem, Apply the concepts to solve problems in physical sciences and engineering	Lecture with illustration	Short test on Gauss Divergence theorem Formative Assessment- III

Course Instructor (Aided): Dr.V.Sujin Flower Instructor(S.F): V. Mara Narghese HOD(Aided) :Dr. V. M. Arul Flower Mary Course HOD(S.F) :Ms. Anne Mary Leema

Semester	: III
Name of the Course	:Sequences and Series
Subject code	:MC1732

No. of hours per week	Credits	Total No. of hours	Marks
5	4	75	100

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO	CL
CO- 1	Explain the primary concepts of sequences and series of real numbers	PSO-1	U
CO-2	Define convergent and divergence of sequences and series	PSO-1	R
CO- 3	Distinguish between convergent and divergent of the sequences and series	PSO-1	U
CO-4	Relate the behavior of monotonic and geometric sequences and series	PSO-2,PSO-3	Ар
CO- 5	Calculate the limit and peak point of sequences	PSO-4	An
CO- 6	Analyze the importance of Cauchy's general principle of convergence of sequences and series	PSO-4	An
CO-7	Evaluate the convergence of series using different types of test.	PSO-4	E
CO- 8	Develop their skill in sequence and series to gain mastery in analysis.	PSO-4	An
	Teaching Plan		

Major Core IV

Total contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	e	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ev aluation		
Ι	Sequences								
	1	De Se	quences- finitions Range of quences, Limit of Sequence,	3	Explain the primary concepts of sequences and series of real numbers	Lecture with Illustration	Evaluation through appreciative inquiry		
	2	Se Pro Se	eorems based on bounded quence, oblems based on bounded quence, onotonic Sequence.	3	To distinguish between bounded and monotonic sequences	Lecture with PPT	Evaluation through quizzes and discussions.		
	3	Mo Co Th	eorems based on onotonic Sequence onvergent Sequence eorems based on onvergent Sequence	3	To understand the theorems based on Convergent Sequence and Divergent Sequence	Lecture with Illustration	Slip Test		
	4		vergent Sequence, scillating Sequence	3	To understand Divergent Sequence and Oscillating Sequence	Discussion with Illustration	Quiz and Test		
П	Algeb	ra of	flimits	• •					

	1	Algebra of limits Theorems based on Algebra of limits, Problems based on Algebra of Limits.	2	To identify the limits And Algebra of limits	Lecture with PPT	Evaluation through discussions.
	2	Null sequenceBehaviour ofmonotonic sequenceTheorems basedonBehaviour ofmonotonic sequence	2	To know about Behaviour of monotonic sequence	Lecture	Evaluation through appreciative inquiry
r I	3	Problems based on Behaviour of monotonic sequences Behaviour of Geometric Sequence	2	To identify Behaviour of monotonic sequences and Behaviour of Geometric Sequence	Lecture	Formative Assessment Test
	4	Theorems based on Behaviour of Geometric Sequence	3	Relate the behavior of monotonic and geometric sequences	Group Discussion	Slip Test
	5	Problems based on Behaviour of Geometric sequences	3	To Solve Problems based on Behaviour of Geometric sequences	Group Discussion	Home assignment.
III	Subse	quences	•			*
	1	Subsequences- Definition Theorems based on Subsequences	2	Explain the primary concepts of Subsequences	Lecture with PPT Illustration	Evaluation through
	2	Peak points Peak points- Examples Limit	3	Calculate the limit and peak point of sequences	Lecture with Illustration	Evaluation through appreciative inquiry
	3	Cauchy sequences3 Definition Cauchy	3	To apply the principles of Cauchy sequences	Lecture	Formative Assessment Test
	4	Theorems based on Cauchy sequences Cauchy's General Principle of Convergence	3	To identify the Cauchy sequences principles and solve problems	Group Discussion	Slip Test
IV	Series	of Positive Terms	-	•	<u> </u>	<u> </u>
	1	Series- Definition& Examples Series- Examples	3	Explain the primary concepts of series of real numbers	Lecture with PPT Illustration	Evaluation through discussions.
	2	Theorems based on series Cauchy's General Principle of Convergence in series	3	To understand the theorems based on Cauchy's General	Lecture and group discussion	Evaluation through Assignment
					-	

		Alternative form of Comparison Test Theorems based on Comparison Test		Comparison Test Alternative form of Comparison Test Theorems	Illustration	Assessment Test
	4	Problems based on Harmonic Series Problems based on	3	To solve the Problems based on Harmonic Series Problems based on Comparison	Lecture with Illustration	Slip Test
V	Test of	f Convergence of series Test of Convergence of	3	Explain the Test	Lecture	Evaluation
		series-Kummer's test Kummer's test Theorem Problems based on	5	of Convergence of series using Kummer's test	with PPT Illustration	through discussions.
	2	D'Alembert's ratio Test Problems based on D'Alembert's ratio Test	3	To understand D'Alembert's ratio Test Problems based	Lecture with Illustration	Formative Assessment test
	3	Raabe's Test Problems based on Raabe's Test	3	To calculate Problems based on Raabe's Test	Lecture with Illustration	Slip Test
	4	Root Test Problems based on Root Test	2	To differentiate Raabe's Test and Root Test	Lecture with PPT Illustration	Home Assignment
	5	Cauchy's Condensation Test, Problems based on Cauchy's Condensation Test	1	To solve the Problems based on Cauchy's Condensation Test.	Lecture with Illustration	Quiz and Test

Course Instructor (Aided): Ms.J.C.Mahizha Instructor(S.F): Ms. S. Kavitha HOD(Aided) :Dr. V. M. Arul Flower Mary Course HOD(S.F) :Ms. Anne Mary Leema

Semester	: III	Allied III
Name of the Course Subject code	:Probability Theory and Distributions :MA1731	

No. of hours per week	Credits	Total No. of hours	Marks
5	5	75	100

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO	CL
CO-1	Recall the definition of probability and set functions	PSO-1	R
CO-2	Differentiate between probability and conditional probability and compute according to the requirement	PSO-4	An

CO-3	Understand the definition of random variables, their types and related concepts	PSO-1	U
CO -4	Detect the different probability distributions which are widely used	PSO-4	An
CO-5	Apply the techniques to prove the properties of probability and related distributions	PSO-2,PSO-3	Ар
CO -6	Choose the suitable probability distribution corresponding to a given data	PSO-4,PSO-5	E
Co-7	Test the validity of a given data	PSO-4,PSO-5	Е

Teaching Plan

Total contact hours: 75 (Including lectures, assignments and tests)

Unit	Modu	le	Topics	Lectur e	•	Learning Outcome	Ped	agogy		sessment/ aluation
Ι	Probability			•	- Outcome			<u></u>		
	1	Pro Ex	obability, periment, mple space	2	pro fur un of	recall the definition obability and set obability and set actions and derstand the definitio random variables, bir types and related		Lecture with Illustration	n	Short Test
	2	an Th Ev	ample d eorems based on rents, Problems sed on events	3	of app pro	recall the definition probability and to ply the techniques to ove the properties obability and related		Lecture with Illustration	n	Test
	3	pro	onditional obability, Problems sed on	3	of the the	recall the definition probability and apply techniques to prove properties of bability and related		Lecture with PPT Illustration	n	Quiz and Test
	4	- Ind ev ba ind ev	operties dependent ents, Theorems sed on dependent ents, Problems sed on	3	dif dis wie the pro tec	detect the ferent probability tributions which and dely used and To reca definition of obability and apply the hniques to prove the operties of	re all	Lecture with Illustration	n	Formative Assessment Test
	5	an ba	ayers theorem d Problems sed on Bayers eorem	2	def var	understand the finition of random riables, their types and ated concepts	1	Lecture willustration		Test
II	Rando	om v	ariables	•				•	i	
	1	Di fui co	ndom variables, stribution nction, Discrete, ntinuous- random riable	3	pro fur bet	recall the definition of obability and set actions, to differentiate tween probability and additional probability a mpute according to the	e nd	Group Discussion	n	Quiz and Test

		-		requirement, and to understand the definition of random variables, their types and related concepts		
	2	Problems based on discrete random variable	2	To recall the definition of probability and set functions	Lecture with Illustration	Test
	3	Problems based on continuous- random variable	2	To detect the different probability distributions which are	Lecture with Illustration	Test
	4	Mathematica l expectation	2	Test the validity of a given data	Group Discussion	Quiz and Test
III	Mome	ent Generating Functio	n			
	1	Moment Generating Function, Examples of Moment Generating Function, Problems based on Moment Generating	3	Recall the definition of probability and set functions, understand the definition of random variables, their types and related concepts and to apply the techniques to prove the properties of probability and	Lecture with PPT Illustration	Quiz and Test
	2	Cumulant generating function, properties and Problems based on Cumulant generating Function	3	To recall the definition of probability and set functions and to apply the techniques to prove the properties of probability and related	Group Discussion	Short Test
	3	Characteristic function ,properties, Problems based on Characteristic function and Poisson distribution	3	To recall the definition of probability and set functions, to detect the different probability distributions which are widely used and to apply the techniques to prove the properties of	Lecture with Illustration	Test
	4	Theorem based on poission distribution, Problems based on poission distribution, Mode,mgf of poission distribution	3	To recall the definition of probability and set functions and to apply the techniques to prove the properties of probability and related distributions and to understand the definition of random variables, To apply the techniques to	Group Discussion Lecture with	Short Test

	•	Mode,mgf of		prove the properties	Illustration	J
		poission distribution, fitting of		of probability and related distributions and to detect the		
		poission distribution and problems		different probability distributions which are widely used		
IV	Binon	nial Distribution	-	ļJ		l <u>.</u>
	1	Introduction Definition, Moments of binomial	3	To recall the definition of probability and set functions and to understand the definition of random variables, their types	Group Discussion	Short Test
	2	Central moments, Theorems based on Central moments	3	To understand the definition of random variables, their types and related concepts and recall the definition of probability	Lecture with Illustration	Test
	3	Mode of binomial distribution, Problems based on Mode of binomial distribution	3	To recall the definition of probability and set functions and to apply the techniques to prove the properties of probability and related	Group Discussion	Short Test
	4	Fitting of binomial distribution, examples, Problems based on fitting of binomial	3	To detect the different probability distributions which are widely used and to apply the techniques to prove the properties of probability and related	Lecture with Illustration	Test
V		al Distribution	•	- -	- -	1
	1	Definition, m.g. f about origin of normal distribution, Mean and variance	3	To recall the definition of probability and set functions and to apply the techniques to prove the properties of probability and related	Lecture with Illustration	Test
	2	Standard normal variate, mode, Median,m.g.f about mean of normal distribution, Theorems based	3	To recall the definition of probability and set functions and to understand the definition of random variables, their types and related concepts	Lecture with Illustration	Quiz and Test
	3	Problems based on mean of normal	3	To recall the definition of probability and set	Lecture with Illustration	Formative Assessment

	distribution, Area property of normal distribution, Problems based on area of normal distribution		functions and to understand the definition of random variables, their types and related concepts and to apply the techniques to prove the properties of probability and related distributions	Major Core V	Test
4	Quartile deviation for the normal distribution, Fitting of normal distribution, Problems based on Fitting of normal distribution	3	To recall the definition of probability and to detect the different probability distributions which are widely used and to apply the techniques to prove the properties of	Lecture with Illustration	Test

Course Instructor (Aided): Ms.Jancy Vini Instructor(S.F): Ms. V. Mara Narghese

HOD(Aided) :Dr. V. M. Arul Flower Mary Course HOD(S.F) :Ms. Anne Mary Leema

Semester	: IV
Name of the Course	: Groups and : MC1741
Subject code	Taga

d Rings **L**: DL

Teaching Plan

Unit	Modul	es Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Gro	ups.			-	-
	1.	Definition and examples on Groups	4	To understand the definition of groups	Lecture with Illustration	Evaluation through test
	2.	Definition and examples on Permutation Groups	3	To understand the definition permutation groups	Lecture	Q&A
	3.	Definition of cycle and theorem based on cycles	3	To understand the definition of cycle and theorem	Lecture with	Open Book Assignment
	4.	Theorems on even and odd permutations	2	To understand and apply this theorem in various problems	Lecture with Illustration	Quiz
	5.	Definition examples, theorems and problems of sub	3	To understand the definition and theorems of sub groups	Lecture with Illustration	Group Discussion
	6.	Theorems on cyclic groups and problems based on cyclic groups		To learn the concepts of cyclic groups	Lecture with Illustration	Q&A
П	Order	of an element and Norm	al Sub Gr	oups	- -	
	1.	Definition and Theorems on order of a	2 n	To understand the definition and theorems on order of	Lecture with Illustration	Test
	2.	Problems on order of an element	2	To apply the concept of order of an element in problems	Lecture	Open book assignment

	3.	Definition of Cosets and problems on cosets	3	To understand the definition of cosets and problems	Lecture	Q&A
	4.	Lagrange's Theorem, Euler's Theorem, Fermats theorem	3	To learn Lagrange's Theorem, Euler's Theorem, Fermats	Lecture	Formative Assessment Test
	5.	Normal subgroups - Definition and Examples	2	To know the definition of Normal subgroups	Group Discussion	Q&A
	6.	Problems and theorems on Normal Subgroups	2	To apply the Normal subgroups concept in problems	Lecture with Illustration	Slip Test
III	Isomor	phism	-		*	• -
	1.	Definition, theorems and Examples of Isomorphism	4	To understand the definition and theorems based on	Lecture with Illustration	Quiz

	2.	Cayley's Theorem and Theorem on	3	To learn the	Lecture	SipTest
		and Theorem on Automorphism and generators		Cayley's theorem and understand the concept of Automorphism and		
	3.	Definition of Homomorphism	2	To learn the definition of Homomorphism and Examples	Lecture	Test
	4.	Fundamental Theorem of Homomorphism	3	To study the Fundamental Theorem	Lecture	Q&A
IV	5. Rings	Problems on Kernel	3	To apply Kernel concept in problems	Group Discussion	Brain Storming
1 V	l.	Definition, Elementary properties and examples of Rings	3	To learn the definition of rings	Lecture with	Quiz
	2.	Problems based on Isomorphism of Rings	3	To get the idea of Isomorphism of Rings	Lecture and group	Test
	3.	Types of Rings and Theorems	2	To identify the Types of Rings	Lecture with Illustration	Test
	4.	Examples of Skew fields and Theorems based on Skew fields	2	To apply Skew fields ideain problems	Lecture with	Formative Assessment Test
	5.	Definition and Theorems on integral Domains	1	To know aboutintegral Domains	Lecture with	Assignment
	6.	Characteristic of a Ring	1	To interpret the Characteristic of a Ring	Lecture with Illustration	Quiz and Test
V	Sub Ri	ngs		• • •		• • •
	1.	Definition and Examples of Sub Rings	2	To get the knowledge of sub rings	Lecture with Illustration	Test
	2.	Problems and Theorems on Sub Rings	1	To develop the proof technique and solve problems.	Lecture with Illustration	Q&A
	3.	Definition, Theorems and Examples on ideals	3	To utilize the concept of ideals in examples	Lecture with	Open Book Assignment
	4.	Ordered integral Domains	3	To understand the Ordered integral	Lecture with Illustration	Assignment
	5.	Maximal and Prime Ideals	2	To know about Maximal and Prime Ideals	Lecture with Illustration	Quiz and Test
	6.	Homomorphism of Rings	2	To learn the definition of	Lecture	Assignment

			Homomorphism of Rings	with	
7.	Unique factorization Domain	2	To understand and analyze about Unique factorization	Lecture with Illustration	Quiz and Test
 T ()	· · · (A: 1. 1) D. V. L. D.	-		1	

Course Instructor(Aided): Dr. K. Jeya Daisy Flower Mary

Course Instructor(S.F): Ms. R.N. Rajalekshmi

HOD(Aided) :Dr. V. M. Arul

HOD(S.F) :Ms. J. Anne Mary Leema Major Core VI

Semester	: IV
Name of the Course	: Analytical Geometry - 3 Dimensions
Subject code	:MC1742
	Teaching Plan

Unit	Modu	les	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation		
I	Direct	tion co	osines of a line		-	-#			
-	1.	Intro defir betw	oduction and hition of distance een points and e between two lines	2	To understand the concept of distance between points and angle	Lecture	Test		
	2.	Defi prob Proje	nition and lems related to ection on a line, ction cosines of a	3	To understand the projection on a line and direction cosines of a line	Lecture with illustrations	Group Discussion		
	 3. Definition of direction ratios and projection of the line joining two points. 4. Definition and Theorems related to direction cosines of the line joining the 5. Definition and problems based on conditions for perpendicularity and parallelism. 		3	To analyze the equations of two skew lines in a simplified form	Lecture	Test			
			2	Acquire the knowledge about direction cosines of the line joining the	Lecture	Test			
			-	To practice various problems related to conditions for	Lecture with group discussion	Group discussion			
П		The	Plane	•		-	Group Discussion Test Test Group		
	1.	prob Equa diffe	nition and lems based on ation of a plane in arent is,Intercept form	3	To understand the concepts Equation of a plane in different forms	Lecture	Test		
	2.	prob Angl plane	nition and lems related to le between the es ,The ratio in th the plane	3	To understand the definition of the ratio in which the plane divides the line joining the points	Lecture	Q&A		
	3.		nition and lems on a plane	3	To practice various problems	Lecture			

		of intersection of two given planes		plane through the line of intersection of two given planes		Test
	4.	Problems based on length of perpendicular, Planes bisecting the angle between two planes.	3	Acquire the knowledge about the planes bisecting the angle between	Lecture with illustrations	Test
III		The Straight Line				
	1.	Definition and methods of finding equation of a line in different forms	3	To understand the methods of finding equation of a line in	Lecture	Quiz
	2.	Problems based on the plane and the straight line	3	To compare the plane and the straight line	Lecture with	Test
	3.	Definition and problems Angle between the lines image of a line	3	To Know the concept of Angle between the lines	Lecture with group	Brain storming
	4.	Problems based on CoP planarity of two lines	3	Acquire the knowledge about Co- planarity of two	Lecture with ppt	Assignment
IV	Short	est distance between two li		_,	+	<i></i>
	1.	Introduction and definition of Shortest distance between two lines	2	To understand the Shortest distance between two lines	Lecture with illustration	Quiz
	2.	Problems based on The equations of two skew lines in a simplified form	4	To analyze the equations of two skew lines in a simplified form	Lecture	Q&A
	3.	Definitions and Problems based on Intersection of three planes	3	Acquire the knowledge about Intersection of three	Lecture	Slip Test
	4.	Theorem and problems based on volume of a	3	To practice various problems related to volume	Lecture	Formative Assessment Test
V		The Sphere			-	-
	1.	Introduction and Illustrations based on equation of the sphere in its general form		To Understand the sphere in its general form	Lecture with	Quiz
	2.	Theorem and problems on determination of the centre and radius of a sphere		To determine the centre and radius of a sphere	Lecture	Test
-		The length of the	2	To know The length of the	Lecture	Slip Test

	tangent from the point to the sphere		tangent from the point to the sphere		
4.	Problems related to Section of sphere by a plane	3	To practice various problems related to Section of sphere by a plane	Lecture	Assignment
5.	Definition of Intersection of two spheres and tangent plane.	2	Acquire the knowledge about Intersection of two spheres and tangent plane.	Lecture with	Formative Assessment Test

Course Instructor(Aided)::Dr.L.JesmalarHOD(Aided):Dr.V. M. Arul Flower MaryCourse Course Instructor(S.F): Ms. V.G. Michael FlorenceHOD(S.F) :Ms. J.AnneMary Leema

5	Semester		: IV		Allie	d	
(Name of the Course Sub code		: Appl Statist MA17	tics :			
Unit	Modules	Topics		Lecture	Learning outcomes	Pedagogy	Assessment/ev

-				hours		g • • • • • • • • • • • • • • • • •	8-87	aluation
Ι		Co	rrelation					
	1	corre corre	nitions and examples of lation, Properties of lation coefficient, Probl d on correlation		5	To Recall the definitions of correlation, Properties of correlation coefficient	Lecture	Quiz
	2	 2 Definition of Rank correlation and proving Spearman's formula, Calculating Rank 3 Definition and results based on regression, Problems on regression 4 Equation of regression lines 			3	To analyze Rank correlation and to solve the problems.	Lecture	Assignment
	3			on	2	To solve the problems on regression	Lecture	Test
	4				1	Apply regression lines in real life problems	Lecture with group discussion	Test
	⁵ Angle between the regression lines.		n	1	To Learn the Angle between the regression lines.	h Lecture	Assignment	
П		Test	t of significance	-			#	•
	sig typ dis Sta		roduction on test of nificance, Sampling and es, Definition on Sampl tribution and examples, ndard error for some npling distributions	l its	3	To solve problems related to test of significance	Lecture with group discussion	Test
	2		sting of hypothesis and		3	To testing of hypothesis	Lecture	Quiz

		errors in testing of hypothesis, critical values for different levels of significance, Procedure for testing of				
	3	Explanation and Problems of test of significance for single proportions	3	To solve problems related to single	Lecture	Formative Assessment
	4	Probable limits, Test of significance for difference of proportions	2	To solve problems related to Probable limits	Lecture	Test
	5	Problems on test of significance for difference of proportions	1	To solve problems related to difference	Lecture with group	Test
III	Test	of significance for means				
	1	Test of significance for single mean if the standard deviation is known, Problems based on confidence limits for population mean, Problems based on test of significance of means.	4	To Learn some methods to solve the Problems based on confidence limits for population mean and Problems based on test of significance	Lecture	Test
	2	Problems based on test of significance for difference of sample means, Test of significance for single standard deviation	2	To Learn some methods to solve the problems of test of significance for difference of sample means and single	Lecture	Test
	3	Test of significance for equality of standard deviations of a normal population.	2	To learn normal population	Lecture	Test
	4	Problems based on test of significance for standard deviation	2	To test the significance for standard deviation	Lecture	Test
	5	Problems based on test of significance for correlation coefficient	3	To test the significance for correlation	Lecture	Test
IV	Test	of significance for small samples	-		_	
	1	Distinguish large and small samples, Test of significance based on t- distribution, Test for the difference between the mean of a sample and that of a	3	To test the significance based on t-distribution, and the difference between the mean of a sample and that of	Lecture with group	Quiz
	2	Test for the difference between	2	To solve problems	Lecture	Assignment

		the means of two samples, Confidence limits for population mean		related Confidence limits	r I	
	3	Problems based on confidence limits for population mean, Test of significance based on F-test	2	To learn the test of significance based on Fs test	Lecture	Assignment
	4	Problems on test of significance based on F-test.	2	To solve problems on test of significance based on F-test.	Lecture	Formative Assessment
	5	Test of significance of an observed sample correlation, Problems on test of significance of an observed sample correlation.	2	To solve problems related to observed sample correlation.	Lecture	Assignment
V	Test h	pased on χ^2 -distribution	•	•		4
	1	Introduction on test based on ² χ , distribution- ² χ <u>test</u> for population	3	To Solve the problems related to χ^2 – test for population	Lecture	Quiz
	2	χ^2 – test to test the goodness of fit	2	To test the goodness of fit for χ^2 – test.	Lecture	Test
	3	Result on χ^2 – test to test the goodness of fit.	2	To learn the Result on χ^2 – test to test the goodness of fit.	Lecture	Formative Assessment
	4	Fit a Poisson distribution for the given data and to test the goodness of fit.	3	To analyze a Poisson distribution.	Lecture	Test
	5	Theorem based on the test for independence of attributes, Yate's Correction.	2	To solve the Problems based on independence of attributes.	Lecture	Assignment

Course Instructor(Aided): A. Jancy Vini Course Instructor(S.F): Dr. C. Jenila

HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J. Anne Mary Leema

Semester - V

Name of the Course: Linear AlgebraSubject Code: MC1751

Number of hours per week	Number of credits	Total number of hours	Marks
6	5	90	100

Objectives:

(i) To introduce the algebraic system of Vector Spaces and the related study of various physical applications.

(ii) To equip students with the ideas of vector space, basis, inner product spaces, linear transformations to pursue their higher studies.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO-1	Recall and define Groups ,Fields and their properties	PSO -1	R
CO- 2	Cite examples of vector spaces ,subspaces and linear transformations	PSO -1	U
CO- 3	Determine the concepts of linear independence, linear dependence, basis and dimension of vector spaces	PSO -1	U
CO- 4	Correlate rank and nullity ,Linear transformation and matrix of a Linear transformation	PSO-2	Ар
CO- 5	Examine whether a given space is an inner product space and the orthonormality of sets	PSO-3	Ар

Unit	Module	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/e valuation
Ι	I Ector Spaces					
	1	Vector spaces - Definition and Examples	3	Understand the basic definitions and fundamental concepts of Vector spaces	Lecture with illustration	Slip Test
	2	Sub spaces -	4	Identify the difference between Vector spaces and subspaces	Lecture	Brain Storming
	3	Sub spaces –solved problems	4	Learn to solve the problems based on sub Spaces.	Lecture with Group Discussion	Assignment
	4	Linear	4	Understand the concept	Lecture with	Jigsaw

		Transformation		of Linear Transformation.	PPT	
II	Span of a	a set				
	1	Span of a Set	4	Understand the definitions and basic concepts of span of a set	Lecture	Slip Test
	2	Linear Independence	4	Identify the difference between Linear Independence and dependence.	Lecture with illustration	Assignment
	3	Basis	3	Understand the concept of Basis	Lecture with PPT	Formative Exam
	4	Dimension	4	Solve the problems based on Basis and dimension.	Lecture with video	Slip Test
III	Rank and	d Nullity				
	1	Rank and Nullity	3	Understand the concept of Rank and Nullity	Lecture	Quiz
	2	Matrix of a linear transformation	3	Determine the concepts of Matrix of a linear transformation	Lecture with illustration	Test
	3	Characteristic Equation	3	Solve the problems based on Characteristic Equation	Lecture with PPT	Slip Test
	4	Cayley –Hamilton theorem	3	Learn the theory of Cayley –Hamilton theorem	Blended Learning	Assignment
	5	Eigen Values and eigen vectors.	3	Solve the problems based on eigen Values and eigen vectors.	Lecture	Formative Exam
IV	Inner Pr	oduct Spaces				
	1	Inner Product Spaces-Definition and Examples	5	Understand the definition and examples of Inner Product Spaces	Lecture with illustration	Quiz
	2	Orthogonality	5	To practice various problems on Orthogonality	Lecture , Blended Learning	Brain Storming
	3	Orthogonal Complement	5	Learn to find the Orthogonal Complement	Lecture	Assignment
V	Bilinear	form				
	1	Bilinear forms	5	Understand the	Lecture	Quiz

			definition of Bilinear	with	
			forms	illustration	
2	Quadratic forms	5	Distinguish between	Lecture	Assignment
			Bilinear forms and		
			Quadratic forms		
3	Reduction of a	5	To practice various	Lecture	Formative
	quadratic form to		Problems based on		Exam
	the Diagonal form		Reduction of a		
			quadratic form to the		
			Diagonal form		

Course Instructor (Aided): Dr. L. Jesmalar Course Instructor (S.F): Ms. R.N. Rajalekshmi HoD(Aided): Dr. V.M. Arul Flower Mary HoD(Aided): Ms. J. Anne Mary Leema

Name of the Course: Real AnalysisSubject code: MC1752

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives

- 1. To introduce Metric spaces and the concepts of completeness, continuity, connectedness, compactness and uniform convergence.
- 2. To use these concepts in higher studies.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO- 1	Understands the concepts of completeness, continuity and discontinuity of metric spaces	PSO- 1	U
CO- 2	Apply the metric space theorems to real life situations	PSO- 4	Ар
CO- 3	Distinguish between continuous functions and uniform continuous functions	PSO-9	An
CO -4	Use the basic concepts in the development of real analysis results	PSO-1	С
CO- 5	Understand the concepts of countable and uncountable sets, metric space, connectedness, compactness of metric spaces	PSO-7	U

CO- 6	Develop the ability to reflect on problems that are quite	PSO-8	Ар
	significant in the field of real analysis		

Unit	Module	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	1	Introduction to real analysis. Definitions, examples and theorems on Countable and Uncountable Sets.	4	To determine countable and uncountable sets	Lecture with PPT	Quiz
	2	Metric spaces definitions, problems and theorems	5	To explain about metric spaces	Lecture, Group discussion	Test
	3	Bounded sets definitions and problems	2	To find out a set is bounded or unbounded	Lecture	Quiz
	4	Open ball, open sets definitions, examples, problems and theorems	3	To solve problems on open sets	Lecture with PPT	Assignment
	5	Equivalent metrics, Subspace	3	To analyse about equivalent metrics	Lecture	Test
Π	1	Interior of a set definitions, examples, problems and theorems	3	To analyse about interior of a set	Lecture with group discussion	Assignment
	2	Closed sets, closure definitions, examples, problems and	4	To determine the closed sets and closure of the subsets	Lecture	Formative Assessment

		theorems				
	3	Limit point definitions, examples, problems and theorems, Dense sets definitions, examples, and theorems	3	To find the limit point	Lecture	Assignment
	4	Complete metric space definitions, examples, problems and theorems	5	To analyse about complete metric space	Lecture with group discussion	Test
	5	Cantor's intersection theorem, Baire's Category theorem	3	To explain the theorems	Lecture	Test
III	1	Continuity of functions definitions, examples, problems and theorems	4	To determine the continuity of a function	Lecture	Assignment
	2	Composition of continuous functions problems	3	To analyse about composition of continuous functions problems	Lecture	Assignment
	3	Homeomorphism examples	3	To learn to prove homeomorphism	Lecture with group discussion	Test
	4	Uniform continuity definitions, examples, problems and theorems	2	To determine the uniformly continuous functions	Lecture	Assignment
	5	Discontinuous functions definitions, examples, problems and theorems	5	To test the discontinuity of a function	Lecture with PPT	Test
IV	1	Connectedness	3	To learn to prove the	Lecture	Quiz

		definitions, examples, problems and theorems		connectedness of the subsets	with group discussion	
	2	Connected subsets of R problems and theorems	3	To determine the connected subsets	Lecture	Formative Assessment
	3	Connectedness and continuity problems and theorems	3	To compare connectedness and continuity	Lecture with group discussion	Assignment
	4	Intermediate value theorem	1	To learn Intermediate value theorem	Lecture	Test
V	1	Compactness definitions, examples, and theorems	3	To explain the concept compactness	Lecture	Test
	2	Compact subsets of R theorems	2	To learn to prove the theorems	Lecture	Test
	3	Equivalent characterisations for compactness problems and theorems	5	To learn to prove the theorems	Lecture	Formative Assessment
	4	Compactness and continuity	3	To compare compactness and continuity	Lecture	Test

Course Instructor (Aided): Dr.J. Befija Minnie Course Instructor (S.F): Ms. V. Mara Narghese HoD(Aided): Dr. V.M. Arul Flower Mary HoD(Aided): Ms. J. Anne Mary Leema

Name of the Course : Graph Theory

Course code : MC1753

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

- **1.** To introduce graphs, directed graphs and the concepts of connectedness and labeling.
- **2.** To apply these concepts in research.

СО	Course Outcomes	PSO	CL
	Upon completion of this course the students	addressed	
	will be able to:		
CO - 1	understand the basic definitions to write the proofs of simple	PSO - 1	U
	theorems		
CO - 2	employ the definitions to write the proofs of simple theorems	PSO - 2	Ар
CO - 3	relate real life situations with mathematical graphs	PSO - 3	Ар
CO - 4	develop the ability to solve problems in graph theory	PSO - 4	An
CO - 5	analyze real life problems using graph theory both quantitatively and qualitatively	PSO - 4	An

	Modul	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/e
Unit	e		hours			valuation
Ι	Graphs and Sub graphs					
	1	Graphs and Sub graphs -	4	Understand the basic	Lecture	Brainstorming
		Definition and		definitions and	with	
		Examples - Degrees,		fundamental concepts of	illustration	
		Sub graphs,		graph theory		
		Isomorphism				
	2	Ramsey Numbers -	4	Identify the difference	Lecture	Slip Test
		Independent sets and		between Independent sets	with PPT	
		coverings - Intersection		and coverings and		
		graphs and line graphs		understand the concept of		
				Intersection graphs and		
				line graphs		
	3	Matrices - Operations on	4	Learn to form adjacency	Lecture	Assignment
		graphs		and incidence matrices of	with Group	Method
				a graph and learn	Discussion	
				different types of		
				operations on graphs		

	4	Degree Sequences - Graphic Sequences.	5	Understand the concept of Degree Sequences and Graphic Sequences.	Lecture with Video	Test
II	Connec	tedness		•		
	1	Connectedness - Walks, Trails and Paths	5	Understand the definitions and distinguish among walks, trails and paths	Blended learning	Brainstorming
	2	Connectedness and Components	5	Understand the definitions of cut point and bridge of a graph and analyse the connectedness of a graph	Lecture with PPT	Jigsaw
	3	Blocks -Connectivity	5	Understand the concept of blocks and learn to find the connectivity of different graphs	Lecture with PPT	Formative Exam
	4	Eulerian Graphs - Hamiltonian Graphs(excluding theorem 5.10)	5	Understand the concept of Eulerian graphs and Hamiltonian graphs	Lecture with illustration	Test
III	Trees					
	1	Trees - Characterisation of trees - Centre of a tree	5	Understand the concept of trees	Lecture with PPT	Quiz
	2	Matchings - Matchings in bipartite graphs.	5	Understand the concept of Matchings and to practice various Theorems	Blended learning	Test
IV	Planari	ity			I	I
	1	Definition and properties	5	Cite examples of planar and non-planar graphs	Lecture with illustration	Quiz
	2	Colourability - Chromatic number and chromatic index	5	Learn to find the chromatic number of different graphs	Blended learning	Formative Exam
	3	The Five Colour Theorem - Chromatic polynomials	5	To practice various Theorems and learn to write the chromatic polynomial of different graphs	Lecture	Presentations
V		d Graphs				
	1	Directed Graphs - Definition and Basic Properties	4	Understand the definition of digraphs	Lecture with illustration	Quiz

2	Paths and Connections - Eulerian Trail	4	Distinguish between strongly connected and weakly connected digraphs and understand the concept of Eulerian trails	Lecture with PPT	Test
3	Digraphs and Matrices - Tournaments	5	To practice various Theorems and understand the concept of Tournaments	Lecture with group discussion	Formative Exam

Course Instructor (Aided): Sr. S. Antin Mary

HoD(Aided): Dr. V.M. Arul Flower Mary

Course Instructor (S.F): Ms. J. Anne Mary Leema

HoD(Aided): Ms. J. Anne Mary Leema

Name of the Course: Numerical Methods

Course Code : MC1755

No. of hours per week	Credits	Total No. of hours	Marks	
5	4	75	100	

Objectives: 1. To study Numerical differentiation and Numerical integration using different formulae.

2. To develop various methods for solving applied scientific problems.

Course Outcome

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	understand the basic definitions and meaning of interpolation	PSO - 1	U
CO - 2	select appropriate numerical methods and apply the same to various types of problems	PSO - 1	U
CO - 3	apply numerical methods to obtain approximate solutions to mathematical problems	PSO - 3	Ар
CO - 4	employ different methods of constructing a polynomial using various methods	PSO - 2	А
CO - 5	compare the rate of convergence of different numerical formula	PSO - 4	An
CO - 6	distinguish the advantages and disadvantages of various numerical methods	PSO - 4	An

Unit	Module	Topics	Lecture hours	Learning Outcome	Pedagogy	Assessment/ Evaluation				
Ι	Solutions of algebraic and transcendental equations									
	1	Iteration method and problems	3	To understand the non-linear algebraic equations - Iteration method	Lecture with Illustration	Evaluation through test				
	2	More problems on Iteration method	2	To understand solving techniques of Iteration method	Lecture with Illustration	Quiz and Test				
	3	Newton Raphson method and problems	3	To understand the non-linear algebraic equations - Newton Raphson method	Lecture with Illustration	Quiz through Quizizz				
	4	More problems on Newton Raphson method	2	To solve problems using Newton Raphson method	Lecture with Illustration	Test				
	5	Finite difference	3	To understand Finite difference	Lecture with PPT Illustration	Quiz and Test				
	6	Difference operators	2	To understand Difference operators	Lecture with Illustration	Formative Assessment Test				
II	Interpola	ation	1		1	1				
	1	Newton's Interpolation formulae	4	To understand Interpolation	Lecture with PPT Illustration	Test				
	2	Lagrange's Interpolation	4	To understand Lagrange Interpolation	Lecture with	Quiz and Test				

		formula			Illustration	
	3	Divided difference	3	To understand Divided difference	Lecture with Illustration	Evaluation through test
	4	Newton's divided difference formula	4	To solve the problems using Newton's divided difference formula	Lecture with PPT Illustration	Formative Assessment Test
III	Numeric	al differentiation	l		I	
	1	Derivatives using Newton's forward difference formula	4	To recall the basic concepts of Numerical differentiation	Lecture with Illustration	Evaluation through test
	2	Numerical differentiation using interpolation formulae for equal interval and problems	3	To solve the problems using Newton's forward difference formula	Lecture with PPT Illustration	Quiz through Quizizz
	3	Derivatives using Newton's backward difference formula.	4	To learn the derivation of Newton's backward difference formula	Lecture with Illustration	Quiz and Test
	4	More problems on Newton's backward	4	To solve the problems using Newton's backward	Lecture with PPT	Formative Assessment

		difference formula		difference formula	Illustration	Test				
IV	Numerical integration									
	1	Newton cote's - quadrature formula	4	To understand Newton cote's - quadrature formula	Lecture with Illustration	Test				
	2	Numerical integration by Trapezoidal rule	3	To learn the derivation of Trapezoidal rule and to solve the problems usingTrapezoidal rule	Lecture with PPT Illustration	Quiz through Quizizz				
	3	Numerical integration by Simpson's (1/3) rd rule	2	To learn the derivation of Simpson's $(1/3)^{rd}$ rule and to solve the problems using Simpson's $(1/3)^{rd}$ rule	Lecture with Illustration	Formative Assessment Test				
	4	Numerical integration by Simpson's (3/8) th rule	4	To learn the derivation of Simpson's (3/8) th rule and to solve the problems using Simpson's (3/8) th rule	Lecture with Illustration	Test				
V	Numerical solution of differential equation									
	1	Sole the differential equation using Taylor's series method	4	To understand Taylor's series method	Lecture with Illustration	Test				
	2	More problems on Taylor's series method	4	To solve the differential equation using Taylor's series method	Lecture with PPT Illustration	Quiz and Test				
	3	Sole the differential	4	To understand Picard'smethod	Lecture with	Quiz through				

	equation using Picard's method.			Illustration	Quizizz
4	More problems on Picard'smethod	3	To solve the differential equation using Picard's method	Lecture with Illustration	Test

Course Instructor (Aided): Ms. A. Jancy Vini

HoD(Aided): Dr. V.M. Arul

Flower Mary Course Instructor (S.F): Ms. D. Berla Jeyanthy

HoD(Aided): Ms. J. Anne

Mary Leema

Teaching Plan (2019-2020) Semester - VI

Name of the Course : Complex Analysis Subject code : MC1761

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives

- 1. To introduce the basic concepts of differentiation and integration of complex functions.
- 2. To use these concepts in higher studies.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	understand the geometric representation of complex numbers	PSO- 1	U
CO- 2	use differentiation rules to compute derivatives and express complex- differentiable functions as power series	PSO- 4	E
CO- 3	compute line integrals by using Cauchy's integral theorem and formula	PSO-3	E
CO -4	identify the isolated singularities of a function and determine whether they are removable, poles or essential	PSO-1	U
CO- 5	evaluate definite integrals by using residues theorem	PSO-8	E

Unit	Module	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	1	Complex numbers – conjugation and modulus	5	To prove C is a field and some inequalities	Lecture	Assignment
	2	Geometrical representation of complex numbers and n th roots of complex numbers	5	To find magnitude, argument and n th roots of complex numbers	Lecture, Group discussion	Test
	3	Circles and straight lines – general equations and problems	4	To obtain necessary and sufficient condition for the concept inverse points and reflection points	Lecture	Quiz
	4	Regions in the complex plane - definitions and examples	2	To identify regions in ℂ	Lecture with PPT	Assignment
	5	The extended complex plane - definition and problems	2	To determine the point on the sphere that represents the complex plane	Lecture	Test
II	1	Differentiability – definitions and theorems	3	To analyse basic properties of differentiability	Lecture	Assignment
	2	Cauchy Riemann equations – theorems and examples, Alternate forms of C.R equations – theorems and	7	To get necessary & sufficient condition for differentiability	Lecture	Formative Assessme nt

	3	problems Analytic functions –	5	To discuss some	Lecture	Test
		definition and problems		properties of analytic function		
	4	Harmonic functions – definitions, theorems and problems	7	To find analytic functions	Lecture with group discussion	Assignment
	5	Bilinear transformations – elementary transformation and cross ratio	7	To determine the image of given region under bilinear transformation	Lecture with PPT	Test
III	1	Definite integral – definitions, theorems and examples	4	To evaluate definite integral	Lecture	Assignment
	2	Cauchy's theorem – definition and theorems	5	To prove Cauchy's theorems	Lecture	Test
	3	Cauchy's integral formula – theorems and problems	5	To evaluate integrals	Lecture with group discussion	Test
IV	1	Taylor's series-	5	To expand given function as Taylor's series	Lecture	Assignment

		Taylor's theorem and problems			with group discussion	
	2	Laurent's Series – Laurent's theorem and problems	5	To expand given function as Laurent's series	Lecture	Formative Assessment
	3	Zeros of analytic functions – definition and problems	3	To determine zeros of analytic functions	Lecture	Assignment
	4	Singularities – definitions and examples	2	To find singularity of a given function	Lecture	Test
V	1	Residues –definition, lemmas and problems	5	To find residue of a given function	Lecture	Test
	2	Cauchy's residue theorem – theorems and examples	4	To evaluate given definite integrals	Lecture	Test
	3	Evaluation of definite integrals – method and problems	5	To evaluate given definite integrals	Lecture	Formative Assessment

Course Instructor (Aided): Dr. M. K. Angel Jebitha Mary Course Instructor (S.F): Ms. V. Pincy Kala HoD (Aided): Dr. V.M. Arul Flower HoD (Aided): Ms. J. Anne Mary Leema

Semester V

Major Core VII- Linear Algebra Course Code: MC2051

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

1. To introduce the algebraic system of Vector Spaces, inner product spaces.

2. To use the related study in various physical applications.

Course Outcomes

СО	upon completion of this course, the students will be able to:	PSO addressed	CL
CO-1	recall and define Groups, Fields, and their properties	PSO - 1	R

CO-2	cite examples of vector spaces, subspaces, and linear transformations	PSO - 1	U
CO-3	determine the concepts of linear independence, linear dependence, basis, and the dimension of vector spaces	PSO - 1	U
CO-4	correlate rank and nullity, Linear transformation, and matrix of a Linear transformation	PSO - 2	Ар
CO-5	examine whether a given space is an inner product space and the orthonormality of sets	PSO - 3	Ар

Total contact hours: 90 (Including lectures, assignments, quizzes, and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Vector s	paces				
	1.	Vector spaces - Definition	4	To understand Vector spaces and their Definition	Lecture Illustration	Evaluation through slip test
	2.	Vector spaces - Examples	4	To give examples of vector spaces on different fields.	Lecture Illustration	quiz, test
	3.	Subspaces	5	To prove many theorems related to subspaces and derive some examples.	Lecture Illustration	Evaluation through slip test
	4.	Linear transformation.	5	To determine linear transformations and study their properties and types.	Lecture Illustration	Class test
II		n of a Set				
	1	Span of a Set	3	To understand about Span of a Set	Lecture Illustration	Home Assignment
	2	Linear Independence	4	To identify the Linear Independence and dependence of a set	Lecture Illustration	Evaluation through slip test
	3	Basis and Dimension	3	To calculate the Basis and Dimension of a given set	Lecture Illustration	Formative Assessment
	4	Rank and Nullity	4	To find the rank and nullity of a given set	Lecture Illustration	Online Quiz, Test
	5	Matrixof a Linear Transformation	4	To calculate the Matrixof a Linear Transformation	Lecture Illustration	Home Assignment
III	Cayley-l	Hamilton Theorem	-			

	1	Characteristic Equation	4	To understand basic concepts ofCharacteristic	Lecture Illustration	Slip Test
	2	Cayley-Hamilton Theorem	5	Equation To analyze the Cayley-Hamilton Theorem for matrix	Lecture Illustration	Online quiz
	3	Eigenvalues and Eigen vectors	5	To determine the Eigen values and Eigenvectors of the matrix	Lecture Illustration	Online Assignment
	4	Properties of Eigenvalues.	4	To study the Properties of Eigenvalues.	Lecture Illustration	SlipTest
IV	Inner P	roduct Spaces				
	1	Inner Product Spaces - Definition	4	To understand the definition of inner product space	Lecture Illustration	Slip Test
	2	Inner Product Spaces - examples	4	To verify examples of Inner Product Spaces	Lecture Illustration	Home Assignment
	3	Orthogonality	5	To study theorthogonalitycondit ion and related theorems	Lecture Illustration	quiz
	4	Orthogonal complement	5	To study the Orthogonal complement and related theorems	Lecture Illustration	Formative Test, Online Quiz
V	Bilinear	forms				
	1	Bilinear forms	3	To understand the Bilinear forms	Lecture Illustration	Class Test
	2	Quadratic forms	3	To understand the Quadratic forms	Lecture Illustration	Formative assessment
	3	Reduction of a quadratic form to the diagonal form	3	To derive the Reduction of a quadratic form to the diagonal form	Lecture Illustration	Online Quiz
	4	Partially ordered set-	3	To learn the Partially	Lecture	Online
	5	Lattices Distributive Lattices- Modular Lattices-	3	ordered set-Lattices To find the distributive Lattices- Modular Lattices	Illustration LectureIllustr ation	Assignment Class test

	6	Boolean Algebra.	3	To learn the Boolean	Lecture	Slip test
				Algebra	Illustration	

Course Instructor: Ms. J.C. Mahizha	HoD: Dr.T. Sheeba Helen
Course Instructor: Ms.Anne Mary Leema	HoD(SF): Dr.S.Kavitha

Semester: VName of the Course:Real Analysis IICourseCode: MC2052

Major Core VIII

No. of hours per	Credit	Total No. of	Mar
week		hours	ks
6	5	90	100

Objectives: 1. To introduce Metric Spaces and the concepts of completeness, continuity, connectedness and compactness

2. To use these concepts in higher studies.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	understand the concepts of completeness, continuity and discontinuity of metric spaces	PSO - 1	U
CO - 2	apply the metric space theorems to real life situations	PSO - 4	Ap
CO - 3	distinguish between continuous functions and uniform continuous functions	PSO - 5	An
CO - 4	use basic concepts in the development of real analysis results	PSO - 1	С
CO - 5	Understand the concepts of metric space, connectedness and compactness of metric spaces	PSO - 3	U
CO- 6	Develop the ability to reflect on problems that are quite significant in the field of analysis	PSO -2	Ар

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	1	Metric Space, definition and examples	3	Explain the primary concepts of Metric Space	Lecture with Illustration	Evaluation through appreciative inquiry

	-		-		-	
	2	Bounded sets, Open ball, Open sets	3	To understand the conceptsBounded sets, Open ball and Open sets	Lecture with PPT	Evaluation through quizzes and discussions.
	3	Subspace, Interior of a set, Closed sets	3	To understand about Subspace, Interior of a set and Closed sets	Lecture with Illustration	Slip Test
	4	Closure,Limit point, Dense sets.	3	To understandabout Closure, Limit point and Dense sets	Discussion with Illustration	Quiz and Test
II	1	Complete metric space	3	To know about complete Metric space	Lecture with PPT	Evaluation through discussions.
	2	Cantor's intersection theorem - Baire's Category theorem	3	To know about Cantor's intersection theorem andBaire's Category theorem	Lecture	Evaluation through appreciative inquiry
	3	Contraction mapping- Definition and examples- Contraction mapping theorem	3	To learn the concept Contraction mapping	Lecture	Formative Assessment Test
III	1	Continuity of functions	3	To explain the concept Continuity of functions	Lecture with Illustration	Evaluation through appreciative inquiry
	2	Composition of continuous functions, Equivalent conditions for continuity	4	To study the concepts Composition of continuous functions	Lecture with PPT	Evaluation through quizzes and discussions
	3	Homeomorphism, Uniform continuity	3	To understand the concepts Homeomorphism and Uniform continuity	Lecture with Illustration	Slip Test
	4	Discontinuous functions on R	3	To understand the concept Discontinuous functions	Discussion with Illustration	Quiz and Test
IV	1	Connectedness, Definition and examples	3	To study about Connectedness	Lecture with PPT Illustration	Evaluation through discussions
	2	Connected subsets of R	3	To learn the conceptConnected subsets	Lecture with Illustration	Evaluation through appreciative inquiry
	3	Connectedness and	3	To understandthe	Lecture	Formative

		continuity		relation between		Assessment
				Connectedness and		Test
				Continuity		
	4	Intermediate value	2	To study about the	Group	Slip Test
		theorem		Intermediate value	Discussion	
				theorem		
V	1		3	Explain the primary	Lecture	Evaluation
		Compactness,		concepts of	with PPT	through
		Compact space		Compactness	Illustration	discussions.
	2	Compact subsets of	3	To understand the	Lecture	Evaluation
		R		concept Compact	and group	through
				subsets of R.	discussion	Assignment
	3	Equivalent	3	To study about	Lecture	Formative
		Characterization for		Equivalent	with	Assessment
		Compactness		Characterization for	Illustration	Test
				Compactness		
	4	Compactness and	4	To understand the	Lecture	Slip Test
		continuity		relation between	with	
				Compactness and	Illustration	
				Continuity		

Course Instructor: Dr. J.Befija Minnie Course Instructor S.F: Ms. Monisha

HoD:Dr. T.Sheeba Helen HoD:Dr. S.Kavitha

Name of the Course : Graph Theory

Subject code : MC2055

No. of hours per week	Credits	Total No. of hours	Marks
5	4	75	100

Objectives:

- 1. To introduce graphs and the concepts of connectedness, matchings, planarity and domination.
- 2. To apply these concepts in research.

Course Outcome

СО	Upon completion of this course the students	PSO	CL
	will be able to:	addressed	
CO - 1	understand the basic definitions to write the proofs of simple theorems	PSO - 1	U
CO - 2	employ the definitions to write the proofs of simple theorems	PSO - 2	Ар
CO - 3	relate real life situations with mathematical graphs	PSO - 3	Ар

CO - 4	develop the ability to solve problems in graph theory	PSO - 4	An
CO - 5	analyze real life problems using graph theory both quantitatively and qualitatively	PSO - 4	An

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/evaluation
Ι		al Representation – s and cut edges	Isomorphism	n and degrees - cy	cles in a graph	- connected graphs - cut
	1.	Trail and Path- Examples, Cycles in graphs – definitions and theorems, Theorems on limit points and examples, Theorems on connected graph	3	To apply the results in real life cycle	Lecture with Illustration	Evaluation through test
	2.	Theorems on cycles in graph, complement graphs – definition and theorems, Digraph	3	To distinguish the theorems and their application	Lecture with Illustration	Slip test
	3.	Definitions and Theorems on cut vertices and cut edges	3	To identify the cut vertices and edges	Lecture with Examples	Brain Storming and Test
	4.	Trivial and non- Trivial Graphs – definitions and theorems	3	To construct the graphs	Discussion with Illustration	Quiz and Test
Π		graphs - Fleury's a Travelling Sales-ma	0		0	graphs - Chinese Post-man
	1.	Eulerian Graphs- definitions and theorems, Theorems related to Eulerian trail using digraph	3	To identify the Closed walk.	Lecture with PPT	Test
	2.	Fleury's Algorithm to construct a closed Eulerian trail	2	To construct a Eulerian Trail	Lecture with illustration	Test
	3.	Hamiltonian Graphs – definitions and theorems,	2	To identify the difference in cycle and path	Lecture	Assessment Test

		Hamiltonian cycle				
	4.	and path Problem basedon weightedgraphs - Chinese Post-man Problem - Travelling Sales-	3	To construct a road map.	Group Discussion	Test
		man Problem Bipartite graphs				
	5.	Bipartite graphs- Definition and Theorems, Theorems on trees.	2	To calculate a unique path.	Lecture with illustration	Test
III		aphs - Euler formula rization of planar gra				colouring - An algorithm for
	1.	Definition and examples related to planar graphs, Euler's formula for planar graphs and related corollary	3	To understand the concept in Eulerian and planar graph	Lecture with PPT Illustration	Quiz
-	2.	Definition and theorems related to Platonic solids, Dual of a plane graph, Definition and theorem related to characterization of planar graph	3	To apply the ancient concerned with polyhedra.	Lecture with Illustration	Test
	3.	Definition and theorems on colouring, Theorem related to maximum colourings of a graph,triangle free graph in colouring	4	To identify alternating colours to the graphs	Lecture with examples	Assignment
	4.	Definition and theorems related to edge colouring, An algorithm for vertex colouring	2	To identify the colouring and solve the problems	Group Discussion	Formative Assessment Test
		of a graph	<u> </u>			 graphs – Euleriandigraphs -

	Tournam	nent.							
	1.	Introduction, Definitions related to directed graph	3	To understand the concept about directed graph	Lecture with PPT Illustration	Brain Storming			
	2.	Strongly connected graph – definition and theorems	3	To understand the concept of strong, unilateral, weakly connected graph.	Lecture and group discussion	Test			
	3.	Definition and Theorems related to Strong orientation of graphs	2	To understandabout orientation graph.	Lecture with Illustration	Quiz and Test			
	4.	Eulerian Digraph- definition and theorems, Tournaments	4	To understand the in degree and out degree to solve the problems.	Lecture with Illustration	Test			
V	Dominating Sets, Relationship between independent sets and dominating sets, Irredundant sets Upper Bounds and Lower Bounds for the Domination Number .								
	1.	Introduction and definition related to Dominating Sets with theorems,	2	To understand solve real life problems in dominating Sets	Lecture with PPT Illustration	Test			
	2.	Definition and theorems relate to Independent Sets and Irredundant sets	3	To understand relate to independent and irredundant sets and problems related to it.	Lecture with Illustration	Assessment test			
	3.	Definition Examples and theorems related to Bounds-Upper Bound	4	To understand the isolated vertices in graphs	Lecture with PPT Illustration	Slip test			
	4.	Theorems related	3	To understand the concept	Lecture with PPT	Quiz			

	to Lower Bounds	about	Illustration	
		Domination and		
		connected		
		graph.		

Course Instructor (Aided): Sr. S. Antin MaryHoD(Aided)Course Instructor (S.F): Dr. G. JovitVinishMelmaHoD(S.F)

HoD(Aided): Dr. T. Sheeba Helen HoD(S.F) : Dr. S. Kavitha

Semester V Major Core IX- Computer Oriented Numerical Methods Course Code: MC2053

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

- **1.** To provide suitable and effective numerical methods, for computing approximate numerical values of certain raw data.
 - 2. To lay foundation of programming techniques to solve mathematical problems.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	understand the elementary programming language and its structure	PSO - 4	U
CO - 2	develop computer programmes for the solution of various numerical problems	PSO - 5	C
CO - 3	apply numerical methods to obtain approximate solutions to mathematical problems	PSO - 3	Ар
CO - 4	employ different methods of constructing a polynomial using various methods	PSO - 2	А
CO - 5	compare the rate of convergence of different numerical formula	PSO - 4	An
CO - 6	distinguish the advantages and disadvantages of various numerical methods	PSO - 4	An

Course Outcomes

Total contact hours: 90 (Including lectures, assignments and tests)

Uni	Sectio	Topics	Lect	Learning outcomes	Pedagogy	Assessment/eval
t	n		ure hour			uation
			S			
Ι	Basis	s structure of C programs				
	1	Basis structure of C programs, C Tokens and Keywords	3	To understand the structure of a C program and identify C Tokens and Keywords	Lecture with Illustration	Evaluation through Brainstorming
	2	Identifiers, Constants, Variables and Data Types, Operations and Expressions		To identify Identifiers, Constants, Variables and Data Types, Operations and Expressions	Lecture with Illustration	Slip Test
	3	Arithmetic Operators, Relational Operators,	3	To understand the syntax of various operators and apply	Lecture with illustration	Evaluation through role play

	1				1	
		Logical Operators, Assignment Operators, Increment and Decrement Operators		in programmes		
	4	Conditional Operators, Bitwise Operators and Special Operators	3	To understand the syntax of various operators and apply in programmes	Lecture with Illustration	Open book test
	5	Managing Input and Output Operations Formatted Input and Formatted Output	3	To understand the Input and Output Operations	Flipped class	Quiz and Test
Π	Decisio	n making and Branching			I	
	1	Decision making and Branching and Decision making with IF statement	3	To differentiatedecision making and branching	Blended class	Evaluation through Assignment
	2	Simple IF statement The IF Else statements and Nesting of IF Else statements.	3	To understand Simple IF statement The IF Else statements and Nesting of IF Else statements.	Lecture with Illustration	Evaluation through appreciative inquiry
	3	The GOTO statement, Decision making and Looping	3	To express GOTO statement in programmes	Lecture with Small programms	Slip test
	4	The WHILE Statement and The DO Statement	3	To express WHILE Statement and DO Statement in programmes	Lecture with Small programms	Formative Assessment Test
	5	The FOR Statement.	3	To express GOTO statement in programmes	Lecture with Small programms	Formative Assessment Test
III	Solution	ns of algebraic and transcer	ndental	equations		
	1	Solutions of algebraic and transcendental equations. Iteration method and Newton Raphson method	3	To understand the solutions of algebraic and transcendental equations and to solve problems for the same	Lecture with Illustration	Evaluation through open seminar
	2	programs in C for Newton Raphson method	3	To construct the programs in C for Newton Raphson method	Laboratoy method	Evaluation through the output of the program
	3	Interpolation - Newton's Interpolation formulae	3	To understand interpolation and to solve problems using Newton's Interpolation formulae	Lecture with Illustration	Slip Test
	4	programs in C for Newton's Forward Interpolation andBackward Interpolation fomula	3	To construct programs in C for Newton's Forward Interpolation and Backward Interpolation fomula	Laboratoy method	Evaluation through the output of the program
	5	Lagrange's	3	To solve problems using	Lecture with	Evaluation
(•	•

		Interpolation formula		Lagrange's Interpolation formula	Illustration	through open seminar
V	Numerical differentiation and integration					
	1	Numerical differentiation, derivatives using Newton's forward difference	3	To understand Numerical differentiation and to solve problems using Newton's forward difference	Lecture with PPT Illustration	Evaluation through discussions.
	2	Newton's backward difference formula	3	To obtain approximate solutions for problems using Newton's backward difference formula	Flipped Class	Evaluation through appreciative inquiry
	3	Numerical integration, Newton cote's quadrature formula	3	To understand Numerical integration and to develop Newton cote's quadrature formula	Lecture with Illustration	Formative Assessment Test
	4	Trapezoidal rule	3	To obtain approximate solutions for problems using Trapezoidal rule	Problem Solving	Slip Test
	5	Programs in C for Trapezoidal rule	3	To develop programsin C for Trapezoidal rule	Laboratoy method	Evaluation through the output of the program
7	Numerical integration					
	1	Simpson's (1/3) rd rule	3	To find approximate solutions for problems using Simpson's $(1/3)^{rd}$ rule	Problem Solving	Evaluation through exercise problem solving
	2	Programs in C for Simpson's one - third rule	3	To develop programsin C for Simpson's one - third rule	Laboratoy method	Evaluation through the output of the program
	3	Simpson's (3/8) th rule	3	To find approximate solutions for problems using Simpson's (3/8) th rule	Flipped class	Formative Assessment Test
	4	Numerical solution of differential equation	3	To understandnumericalsolutio n of differential equation	Blended class	Slip Test
	5	Taylor's series method and Picard's method.	3	To differentiate Taylor's series method and Picard's method and solve problems	Problem Solving	Formative Assessment Test